Estándares de SWT

Luis Cano Unidad de Energía Eólica CIEMAT

Curso sobre minieólica para autoconsumo: Sistemas eólicos distribuidos y aislados Montevideo (Uruguay). 10 de octubre de 2019

Indice

- Antecedentes.
- Normas específicas de aerogeneradores.
- Normativa de conexión a red de aerogeneradores.
- Ensayo de aerogeneradores.
- Conclusión

Antecedentes

- Un poco de historia.....
- El primer conjunto de normas fueron escritas por Germanischer Lloyd (GL) en 1986.
- En 1993 se publicó "Regulation for the Certification of Wind Energy Conversion Systems" (GL).
- El IEC (International Electrotechnical Commission)
 comenzó su trabajo en la década de los 80 publicando
 la primera norma IEC 1400-1 "Wind turbine generator
 systems Part 1 Safety Requirements" en 1994.
- Hasta hoy en día donde hay más de 20 normas de carácter internacional en la IEC, aparte de diferentes normas y guidelines de diferentes países y empresas.

Antecedentes

- El trabajo de normalización internacional es llevado a cabo por el subcomité IEC/TC88.
- En España, hay un subcomité de AENOR dentro del AEN/CTN 206 - Producción de Energía Eléctrica.
- Además, entidades como la Agencia Internacional de la Energía (IAE) dentro de la Task 27 están liderando proyectos en aras de mejorar las normas existentes y/o sacar nuevas.
- El Wind Turbine Certification Advisory Committee (WT CAC) está haciendo una labor de revisión y control de las normas en conjunto con el IEC /TC88. (http://wtcertification.org/)
- Por último decir que países como Dinamarca, EEUU, y algunos otros tienen sus propias normas.

Normas de aerogeneradores

- Normas Internacionales/Nacionales IEC existentes (vigentes):
 - Norma IEC 61400-2:2013. (12/2013). "Wind turbines Part 2: Small wind turbines".
 - Norma IEC 61400-11:2012+AMD1:2018 (06/2018). "Wind Turbines. Part 11:
 Acoustic noise measurement techniques".
 - Norma IEC 61400-12-1:2017 (03/2017). "Wind energy generation systems Part 12-1: Power performance measurements of electricity producing wind turbines."
 Annex H. Small Wind Turbines."
 - Norma IEC 61400-13:2015. (12/2015) "Wind Turbines. Part 13: Measurement of mechanical loads".
 - Norma IEC 61400-21-1:2019. (05/2019) "Wind Energy Generation Systems. Part
 21-1: Measurement and assessment of electrical characteristics Wind turbines".
 - Norma IEC 61400-23. (04/2014). "Wind Turbines. Part 13: Full-scale structural testing of rotor blades".
 - Norma IEC 61400-24. (07/2019). "Wind energy generation systems Part 24:
 Lightning protection. Annex M. Small Wind Turbines"

Normas de aerogeneradores

Normas Internacionales/Nacionales IEC existentes (trabajo futuro):

IEC (www.iec.ch)

Standard development How we work

List of TC/SCs. Buscar TC 88

 La mayoría de las normas están en continuo cambio y a veces cuando se saca una edición se empieza a trabajar en la siguiente. Un cambio de estas normas se dan cada 5-10 años.

Norma americana AWEA 9.1

- Es la norma americana para la certificación de pequeños aerogeneradores.
- https://smallwindcertification.org/for-applicants/standards/
- Principales diferencias con las de IEC.
 - Define unos parámetros para poder comparar.
 - AWEA Rated Power. Potencia que da la máquina a 11 m/s
 - AWEA Rated Annual Energy. Energía que da una máquina a 5 m/s
 - AWEA Sound Level a 5 m/s
 - La curva de potencia se extiende a más de 5 m/s respecto a la velocidad que se alcanza el 85 % de la potencia nominal
 - En el ensayo de duración hay que tener 10 minutos por encima de 15 m/s independientemente de la clase.

Norma americana AWEA 9.1

Etiqueta en el informe

Certification Number: SWCC-11-04

Rated Annual Energy

Estimated annual energy production assuming an annual average wind speed of 5 m/s (11.2 mph), a Rayleigh wind speed distribution, sea-level air density and 100% availability. Actual production will vary depending on site conditions.

Rated Sound Level

The sound level that will not be exceeded 95% of the time, assuming an annual average wind speed of 5 m/s (11.2 mph), a Rayleigh wind speed distribution, sea-level air density, 100% availability and an observer location 60 m (200 ft) from the rotor center.

Rated Power

The wind turbine power output at 11 m/s (24.6 mph) at standard sea-level conditions.

AWEA Standard 9.1 - 2009

For SWCC Summary Report, Certificate and certification status visit: www.smallwindcertification.org

kWh/year

8,950

43.1

dB(A)

Certified to be in Conformance with:

5.2 kW

Norma británica RENEWABLE UK

- Es prácticamente igual a las de la IEC
- http://www.microgenerationcertification.org/images/RenewableUK%20Small%2 0Wind%20Turbine%20Standard%202014%2001%2005.pdf
- Incorpora como novedad una technical note acerca de los inversores y de como se pueden usar unos y otros sobre sistemas certificados.
- También incorpora algunas defunciones.
 - Maximum Power: The maximum output power (being the one-minute definition, P₆₀) as defined in IEC 61400-2 ed 3.
 - Maximum Voltage: The maximum output voltage (being the one-minute definition, U₆₀) as defined in IEC 61400-2 ed 3.
 - Maximum Current: The maximum output current (being the one-minute definition, i₆₀) as defined in IEC 61400-2 ed 3

Norma japonesa JSWTA-0001

- Sigue la IEC pero incluye algunos puntos más restrictivos en la parte estructural.
- El ensayo de pala es condición imprescindible.
- Incorpora ensayos eléctricos algo diferentes a los de la norme IEC 61400-2.
- Es sin duda la norma más restrictiva
- Están proponiendo cosas para los aerogeneradores de eje vertical.

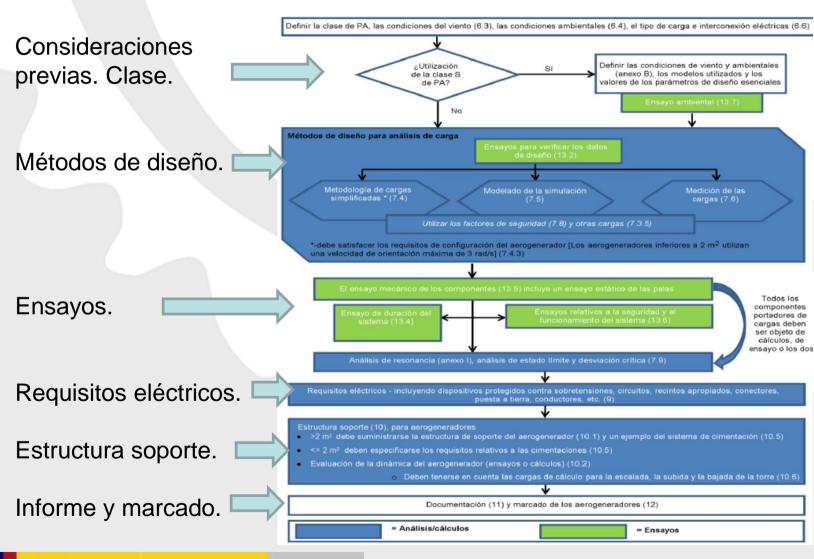
Normas 61400-2

- La norma de pequeños aerogeneradores está dispuesta en 3 grandes partes.
 - Aspectos generales.
 - Evaluación y metodología de diseño de pequeños aerogeneradores.
 - Ensayos tipo

13 anexos

- Anexo A. Variantes de sistemas de aerogeneradores pequeños. (Inform.)
- Anexo B. Parámetros de diseño para la descripción de aerogeneradores pequeños de clase S (Norm.)
- Anexo C. Modelos de turbulencia estocásticos. (Inform.)
- Anexo D. Descripción de la turbulencia determinista. (Inform.)
- Anexo E. Factores de seguridad parciales para materiales (Inform.)
- Anexo F. Desarrollo de la metodología de las cargas simplificadas (Inform.)
- Anexo G. Ejemplos de formato de informes de ensayo. (Inform.)
- Anexo H. Mediciones de la compatibilidad electromagnética (CEM) (Inform.)
- Anexo I. Análisis de la frecuencias naturales. (Norm.)
- Anexo J. Condiciones ambientales extremas. (Inform.)
- Anexo K. Condiciones de viento extremas de ciclones tropicales (Inform.)
- Anexo L. Otras condiciones de viento. (Inform.)
- Anexo M. Etiqueta del usuario. (Inform.)

Normas 61400-2. Aspectos generales


- Los aspectos generales de la norma hacen referencia fundamentalmente a los siguientes aspectos.
 - Objeto y campo de aplicación.
 - Aseguramiento de la calidad y seguridad de los pequeños aerogeneradores en todas las condiciones de viento y de todos los componentes que lo forman (torres, uniones, etc.
 - Área barrida menor o igual de 200 m². (Diámetro = 15.96 m)
 - Tensión de generación menor de 1000 V_{AC} (en conexión a red) o 1500 V_{DC} (sin conexión a red)
 - Glosario y terminología empleada en la norma.
 - Se especifican y definen los términos (con sus correspondientes símbolos) que se van a usar en el desarrollo de la norma.
 - Elementos principales.
 - Metodología de diseño. Se definen los métodos válidos para el diseño
 - Método simplificado.
 - Método simulación.
 - Método medida de cargas.
 - Aseguramiento de la calidad

Normas 61400-2. Aspectos generales

Definición de clase

Clase	de AP	I	II	III	IV	S
$V_{ m ref}$	(m/s)	50	42,5	37,5	30	
$V_{ m ave}$	(m/s)	10	8,5	7,5	6	Valores a
I15 (Nota 2)	(-)	0,18	0,18	0,18	0,18	especificar por el proyectista
a	(-)	2	2	2	2	

NOTA

- 1) Los valores se aplican a la altura del buje, y;
- 2) I_{15} es el valor característico adimensional de la intensidad de la turbulencia para 15 m/s, donde 0,18 es el valor mínimo que debe utilizarse, y el anexo M trata de la intensidad de la turbulencia;
- 3) α es el parámetro adimensional de la pendiente a utilizar en la ecuación (7).
- $V_{\text{diseño}} = 1.4 V_{\text{ave}} y V_{\text{e50}} = 1.4 V_{\text{ref}}$ (a la altura de buje)
- A partir de estas velocidades de referencia se calculan las cargas de diseño y demás sistemas de control, protección, etc.
- La norma hace referencia a todas las partes del diseño, desde el estructural, como el eléctrico, el de control, etc.
- También define lo que son los modelos de vientos normales, los de vientos extremos, los modelos de turbulencia normal, etc., con los que luego se realizan los cálculos.

Hipótesis de carga. Método de análisis simplificado.

Situación de diseño		Hipótesis de carga	Flujo del viento	Tipo de análisis	Observaciones
Producción de	A	Operación normal		F	
energía	В	Orientación	$V_{ m hub} = V_{ m design}$	U	
	С	Error de orientación	$V_{ m hub} = V_{ m design}$	U	
	D	Empuje máximo	$V_{ m hub} = 2.5 \ V_{ m ave}$	U	Rotación del rotor pero puede estar plegándose o al eteando
Producción de energía más	E	Velocidad de rotación máxima		U	
ocurrencia de fallo	F	Cortocircuito en la conexión de carga	$V_{ m hub} = V_{ m design}$	U	Par generador en cortocircuito máximo
Parada	G	Desconexión (frenado)	$V_{ m hub} = V_{ m design}$	U	
Carga extrema del viento	Н	Carga extrema del viento	$V_{ m hub} = V_{ m e50}$	U	El aerogenerador puede estar inmovilizado (en ralentí o parada) o regulado. Ninguna intervención manual
Condiciones de inmovilización y de falta	I	Inmovilización con carga del viento y exposición máxima	$V_{ m hub} = V_{ m ref}$	U	El aerogenerador es cargado con la exposición más desfavorable
Transporte, montaje, mantenimiento y reparación	J	Deberá estar indicado por el fabricante		U	

F análisis de cargas debidas a fatiga.

U análisis de cargas críticas.

• Hipótesis de carga. Método de simulación aeroelástico.

Situación de diseño	DLC		Condición del viento	Otras condiciones	Tipo de análisis
1) Producción de energía	1.1	NTM	$V_{\rm in} \le V_{ m hub} \le V_{ m out} \ { m o} \ 3 imes V_{ m ave}$		F, U
	1.2	ECD	$V_{ m hub} < V_{ m design}$		U
	1.3	EOG ₅₀	$V_{\rm in} \le V_{ m hub} \le V_{ m out} \ { m o} \ { m 3} imes V_{ m ave}$		U
	1.4	EDC ₅₀	$V_{ m in} < V_{ m hub} < V_{ m out} \ { m o} \ 3 imes V_{ m ave}$		U
	1.5	ECG	$V_{ m hub} = V_{ m design}$		U
2) Producción de energía más incidencia de falta	2.1	NWP	$V_{ m hub} = V_{ m design} \ { m o} \ V_{ m out} \ { m o} \ 2,5 imes V_{ m ave}$	Fallo en el sistema de control	U
	2.2	NTM	$V_{\rm in} < V_{ m hub} < V_{ m out}$	Fallo del sistema de protección o de control	F, U
	2.3	EOG ₁	$V_{\rm in} \le V_{ m out}$ o 2,5 $ imes$ $V_{ m ave}$	Pérdida de la conexión eléctrica	U
3) Parada normal	3.1	NTM	$V_{\rm in} < V_{ m hub} < V_{ m out}$		F
	3.2	EOG ₁	V _{hub} = V _{out} o V _{máx,shutdown}		U
4) Parada manual o de emergencia	4.1	NTM	Debe ser establecido por el fabricante		U
5) Carga extrema del viento (parada o al ralentí; o girando)	5.1	EWM	$V_{\mathrm{hub}} = V_{\mathrm{e}50}$	Posible pérdida de potencia eléctrica de la red	U
	5.2	NTM	$V_{ m hub} < 0.7 \ V_{ m ref}$		F
6) Inmovilizado y condiciones de fallo	6.1	EWM	$V_{ m hub} = V_{ m e1}$		U
7) Transporte, montaje, mantenimiento y reparación	7.1	Debe se	r establecido por el fabricante		U

Leyenda

Fanálisis de cargas debidas a fatiga.

U análisis de cargas críticas.

• Hipótesis de carga. Método de simulación aeroelástico.

Situación de diseño	DLC		Condición del viento	Otras condiciones	Tipo de análisis
1) Producción de energía	1.1	NTM	$V_{\rm in} \le V_{ m hub} \le V_{ m out} \ { m o} \ 3 imes V_{ m ave}$		F, U
	1.2	ECD	$V_{ m hub} < V_{ m design}$		U
	1.3	EOG ₅₀	$V_{\rm in} \le V_{ m hub} \le V_{ m out} \ { m o} \ { m 3} imes V_{ m ave}$		U
	1.4	EDC ₅₀	$V_{ m in} < V_{ m hub} < V_{ m out} \ { m o} \ 3 imes V_{ m ave}$		U
	1.5	ECG	$V_{ m hub} = V_{ m design}$		U
2) Producción de energía más incidencia de falta	2.1	NWP	$V_{ m hub} = V_{ m design} \ { m o} \ V_{ m out} \ { m o} \ 2,5 imes V_{ m ave}$	Fallo en el sistema de control	U
	2.2	NTM	$V_{\rm in} < V_{ m hub} < V_{ m out}$	Fallo del sistema de protección o de control	F, U
	2.3	EOG ₁	$V_{\rm in} \le V_{ m out}$ o 2,5 $ imes$ $V_{ m ave}$	Pérdida de la conexión eléctrica	U
3) Parada normal	3.1	NTM	$V_{\rm in} < V_{ m hub} < V_{ m out}$		F
	3.2	EOG ₁	V _{hub} = V _{out} o V _{máx,shutdown}		U
4) Parada manual o de emergencia	4.1	NTM	Debe ser establecido por el fabricante		U
5) Carga extrema del viento (parada o al ralentí; o girando)	5.1	EWM	$V_{\mathrm{hub}} = V_{\mathrm{e}50}$	Posible pérdida de potencia eléctrica de la red	U
	5.2	NTM	$V_{ m hub} < 0.7 \ V_{ m ref}$		F
6) Inmovilizado y condiciones de fallo	6.1	EWM	$V_{ m hub} = V_{ m e1}$		U
7) Transporte, montaje, mantenimiento y reparación	7.1	Debe se	r establecido por el fabricante		U

Leyenda

Fanálisis de cargas debidas a fatiga.

U análisis de cargas críticas.

- Hipótesis de carga. Medida de cargas.
- Resultados a partir de medidas de cargas en las diferentes partes del sistema.
- Seguir la norma IEC 61400-13.
- Hay que conseguir tener condiciones similares a las hipótesis de carga expuestas con anterioridad.

Muy complicado y costoso de ejecutar A veces es imposible, dependiendo del tamaño del aerogenerador

Seguridad.

- Este punto es de vital importancia.
- En el diseño, usar los márgenes de seguridad adecuados.
- En los aspectos de protección y parada.
 - Debe haber medios disponibles para limitar la velocidad de rotación máxima.
 - Debe suministrarse un método de inmovilizar la máquina en condiciones normales (es decir en condiciones externas que sobrevienen con una ocurrencia menor de un año)
 - El sistema de protección contra la sobrevelocidad debe funcionar aunque hay un elemento externo que se rompa.
 - No se puede dejar al libre albedrio la manipulación de los sistemas que hacen que la máquina opere de manera segura.
 - Deben existir en el manual de operación, métodos perfectamente explicados para efectuar la parada normal y la parada por mantenimiento. Cuando estos estén activos, no se puede poner en funcionamiento accidentalmente.
 - El sistema eléctrico debe estar perfectamente protegido, y ser seguro tanto para las personas como la propia máquina y sus componente.

Norma 61400-2. Ensayos

- Ensayos de la norma.
- Ensayo de la verificación de las condiciones de diseño.
- Se debe verificar:
 - Potencia de diseño P_{design} (Potencia de la máquina a la V_{design})
 - Velocidad de rotación de diseño n_{design} (Velocidad de rotación de la máquina a la V_{design})
 - Par de diseño Q_{design}

$$\eta = 0.6 + 0.005 \ P_{\text{design}} \ \text{para} \ P_{\text{design}} \le 20 \ \text{kW}$$

$$\eta = 0.7 \ \text{para} \ P_{\text{design}} \ge 20 \ \text{kW}$$

$$Q_{\text{design}} = \frac{30 P_{\text{design}}}{\eta \pi n_{\text{design}}}$$

Velocidad de rotación máxima n_{máx}

Norma 61400-2. Ensayos

- Ensayos de la norma.
- Ensayo de la verificación de las cargas
 - Es complicado de realizar.
 - No se exige por las certificadoras debido a su enorme precio y complejidad.
 - Se sustituye por una evaluación del diseño minuciosa y el ensayo de palas.
 - Se puede realizar algunas medidas en algún componente, pero en ningún caso seguir la norma IEC 1400-13 al pie de la letra.
- Método de los bines para encontrar la velocidad máxima.
 - 2 horas de datos entre 10 y 20 m/s.
 - 30 minutos por debajo de 15 m/s y 30 por encima.
 - Se extrapola la recta que salga hasta V_{ref}
 - Especial cuidado con la regulación.

Ensayo de Aerogeneradores

Ensayos Tipo

Ensayo Curva de Potencia Ensayo de Ruido

Ensayo de Duración

Ensayo de Funcionamiento y Seguridad

Ensayo de Palas

Norma IEC 61400-2 (Apartado 13.4)

El objetivo del ensayo de Duración es investigar:

- La integridad estructural y la degradación del material (corrosión, fisuras, deformaciones).
- La calidad de la protección medioambiental del aerogenerador.
- > El comportamiento dinámico del aerogenerador.

Requisitos para pasar el test

- → Funcionamiento fiable durante el periodo de ensayo.
- → Al menos 6 meses de funcionamiento.
- → Al menos 2500 horas de producción de energía eléctrica con vientos de cualquier velocidad.
- → Al menos 250 horas de producción de energía eléctrica con vientos de 1.2 Vave y superiores.
- → Al menos 25 horas de producción de energía eléctrica con vientos de 1.8 Vave y superiores.
- → Al menos 10 minutos con vientos de 2.2 Vave y superiores, pero no inferiores a 15 m/s, durante los cuales el aerogenerador debe encontrarse en funcionamiento normal.

Clase	I	II	III	IV	S
V _{ave} (m/s)	10	8.5	7.5	6	Valor a especificar

Fracción del tiempo de funcionamiento (%)

$$O = \frac{T_T - T_N - T_U - T_E}{T_T - T_U - T_E} \times 100\%$$

Donde:

- T_T es el periodo total de tiempo en estudio.
- T_N es el tiempo durante el cual el aerogenerador está notoriamente sin funcionar.
- Tu es el tiempo durante el que el estado del aerogenerador es desconocido.
- T_E es el tiempo que se excluye del análisis.

Tiempos

Condición	T _N	TE	Τυ
Fallo de red		Χ	
Fallo en el SAD			Χ
Sobre-temperatura generador	X		
Fallo detectado por el inversor	X		
Fallo del sistema de frenado	X		
Mantenimiento rutinario	X		
Mantenimiento no rutinario por algún fallo		X	
Inspección indicada por el fabricante en el manual	X		
Inspección no indicada por el fabricante en el manual		X	
Enrollamiento de cables	X		
Rotura de una pala	X		
Rotura del sistema de orientación	X		
Fallo por bajada de frecuencia en la red		X	
Fallo por sobrevoltaje		X	
Anemómetro congelado			X
Fallo en el canal de adquisición de datos			X
Parada para hacer otro ensayo (por ejemplo ruido)		X	
Perdida irresoluble de los datos			X
Fallo de un componente considerado externo al sistema		X	
Parada de emergencia	X		
Condiciones atmosféricas externas que hagan parar el aerogenerador		X	

DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

Procedimiento

- Planta de ensayos.
- Equipos.
- Mantenimiento e inspección.
- Inspección inicial del aerogenerador.
- Recogida de datos.
- Procesamiento mensual de datos.
- Observaciones del comportamiento dinámico.
- Pasados 6 meses → Comprobamos recogida de datos.
- Degradación de producción de la potencia.
- Inspección final del aerogenerador.
- Incertidumbres.

Inspección inicial del aerogenerador

Checklist con todos los componentes y fotos.

Recogida de datos

- Promediado de datos 10-minutales.
- Frecuencia de muestreo de al menos 0,5 Hz.
- Intensidad de turbulencia IT @ 15 m/s.
- Velocidad máxima en ráfagas promediadas de 3 segundos.
- Producción de potencia

Procesado mensual de datos

- Eliminar tiempos T_U,T_N, T_E
- Horas de producción de potencia.
- Velocidad máxima en ráfagas de 3 segundos.
- Intensidad de turbulencia a 15 m/s.
- Curva de potencia mensual.

<u>L</u>	vables
(1)	as reno
	e energi
	arrollo d
	de des
00	centro
10	1
	F

Novem	ber 2011							
		Hour	Hours of power production			Environmental conditions		
Class	Vave (m/s)	0 m/s	1,2 Vave m/s	1,8 Vave m/s	15m/s ≤ V	Maximum speed (m/s)	TI @ 15 m/s	# TI data points @ 15 m/s
I	10	391,333333	65,33333333	2,166666667	15	24,7941	0,08253213	8
II	8,5	391,333333	110,8333333	12,66666667	15	24,7941	0,08253213	8
III	7,5	391,333333	138	32,66666667	15	24,7941	0,08253213	8
IV	6	391,333333	183,1666667	94,66666667	15	24,7941	0,08253213	8

Comportamiento dinámico

Evaluar:

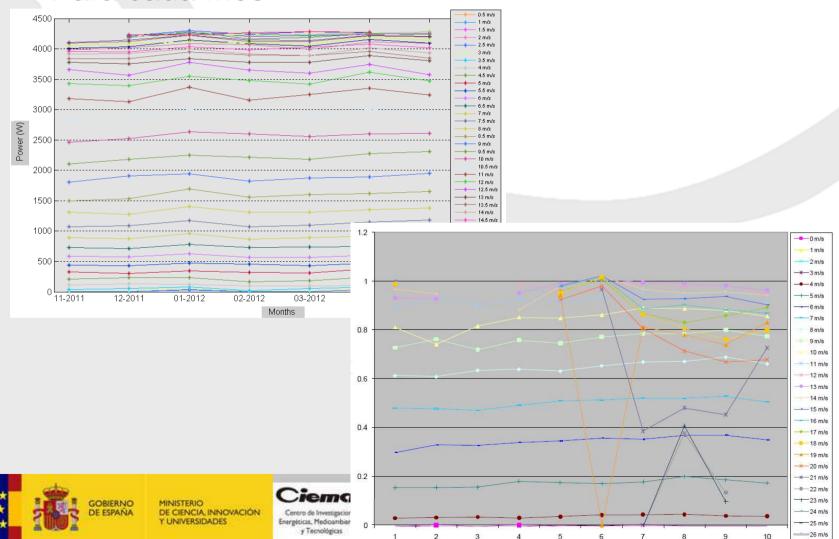
- No existe excesiva vibración.
- Observación bajo todas las condiciones de operación.
- Para velocidades del viento hasta 1,8 Vave.
- Vibraciones de la torre y resonancia.
- Ruido en el aerogenerador.

Resultados

Al menos 6 meses de operación.

	Hours	of power pr	oduction	Environmental conditions			
Months	0 m/s			1.8 Vave Maximum speed		# TI data points @ 15 m/s	
Total	3307.83	12 m/s 849.33	18 m/s 330.83	m/s 43.95	8.18	79	
Nov-11	391.33	65.33	2.17	24.79	8.25	8	
Dec-11	651.67	137.50	51.50	32.23	8.39	8	
Jan-12	489.50	118.50	35.50	36.03	7.51	14	
Feb-12	521.33	273.67	159.50	41.17	7.38	16	
Mar-12	481.83	124.17	41.67	33.79	8.53	4	
Apr-12	487.50	107.50	38.83	43.95	8.14	23	
May-12	284.67	22.67	1.67	24.64	9.06	6	

	Operational time fraction								
Months	Tt (hours)	Tn (hours)	Te (hours)	Tu (hours)	Орр (%)				
Total	4402.80	7.00	237.98	529.74	99.81				
Nov-11	467.80	0.00	52.00	0.50	100.00				
Dec-11	744.00	1.00	43.33	41.79	99.85				
Jan-12	744.00	2.00	33.50	107.68	99.67				
Feb-12	672.00	0.00	2.83	171.66	100.00				
Mar-12	743.00	1.00	83.50	12.32	99.85				
Apr-12	720.00	3.00	15.82	194.62	99.41				
May-12	312.00	0.00	7.00	1.17	100.00				



Degradación de la producción de potencia

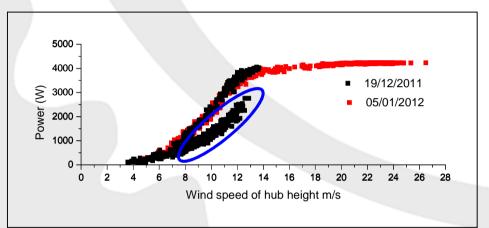
• Para cada mes.

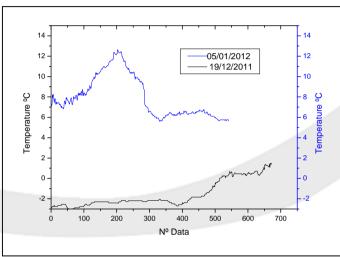
Inspección tras ensayo de duración

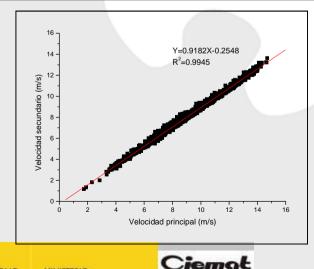
Incertidumbres

Las incertidumbres a evaluar son:

- Horas de producción de potencia.
- Velocidad máxima en ráfagas de 3 segundos.
- > Fracción de los tiempos de operación.

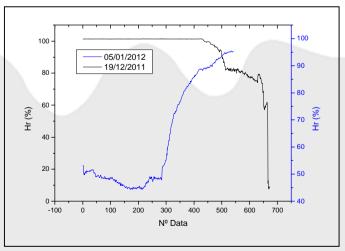






Comprobación de datos (1)

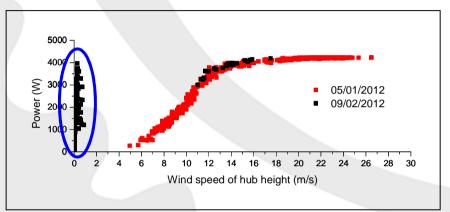
Hielo acumulado en las palas del aerogenerador

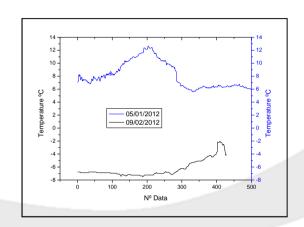


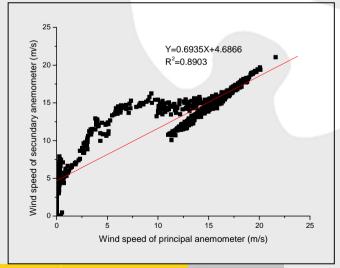
Centro de Investigaciones

Energéticas, Medicambientales y Tecnológicas

DE CIENCIA, INNOVACIÓN

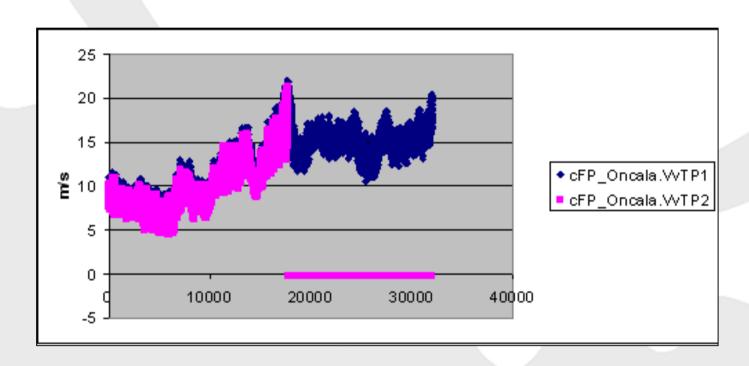

Y UNIVERSIDADES





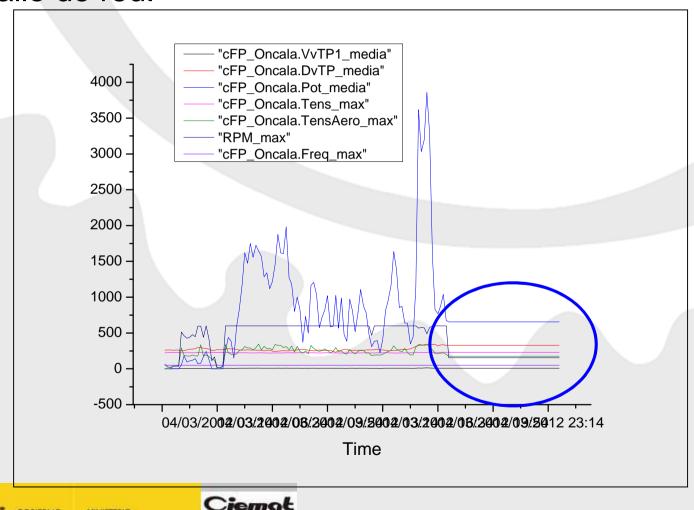
Comprobación de datos (2)

Anemómetro helado.



Comprobación de datos (3)

Anemómetro roto.



Comprobación de datos (4)

• Fallo de red.

DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Pasa / No pasa

	REQUIREMENT	DURATION TEST RESULTS	PASS/FAIL
HOURS OF POWER PRODUCTION	At least 6 months of operation.	6 months and 2 days.	PASS
	At least 2500 hours of power production in winds of any velocity.	3307.83 hours.	PASS
	At least 250 hours of power production in winds of 1.2Vave and above (10 m/s for Class I).	849.33 hours.	PASS
	At least 25 hours of power production in winds of 1.8Vave and above (1 m/s for Class I).	330.83 hours.	PASS
	At least 25 hours in wind speeds of ME.//s and about.	529 hours.	PASS
RELIABLE OPERATION	Operational time fraction at least 90%.	99.81 %	PASS
	No may fail e of the turbine or component on the turbine system.	No major failure	PASS
	No significant wear, corrosion or damage to turbine components.	No significant wear, corrosion or damage.	PASS
	No significant degradation of produced power at comparison wind speeds.	No significant degradation of produced power.	PASS
DYNAMIC BEHAVIOUR	No excessive tower vibrations or resonances, turbine noises or tail and yaw movements.	Nothing unusual witnessed. Measured tower loads within design limits.	PASS

Ensayo de seguridad y funcionamiento. Objetivo

Hay dos importantes objetivos:

- 1. Verificar que el aerogenerador sometido a ensayo presenta el compromiso previsto en el diseño.
- Verificar que los dispositivos relativos a la seguridad del personal se aplican correctamente.

ADVERTENCIA IMPORTANTE

CIENCIA INNOVACIÓN

ESTE ENSAYO NO DETERMINA SI EL AEROGENERADOR ES SEGURO O NO

Normas

IEC 61400-2. Aerogeneradores pequeños

Apartado 13.6 Ensayo de Seguridad y Funcionamiento

AWEA y BWEA tienen la misma referencia a esta norma IEC, por lo que les aplica lo mismo.

Equipos de medida

- Los equipos de medida son los mismos que para el ensayo de duración.
- La frecuencia de muestreo puede ser en algún caso mayor de 1 segundo.
- Series temporales y promediadas son muy importante en este estudio.
- Puede ser que sean necesario instalar otros equipos de medida (ángulo de yaw, acelerómetro, etc)
- Observaciones pueden reemplazar a las medidas.
- Fotos y videos son muy útiles para entender algunas funciones.

Funciones críticas

- ✓ Control de potencia y de velocidad.
- ✓ Control del sistema de orientación (alineación con respecto al viento).
- √ Pérdida de carga.
- ✓ Protección contra la sobrevelocidad a la velocidad del viento de diseño o superior.
- ✓ Arranque y parada por encima de la velocidad del viento de diseño.

Funciones No críticas

- Protección contra la vibración excesiva.
- Protección de la batería contra la sobretensión y subtensión.
- Parada de emergencia en funcionamiento normal.
- > Torsión de cables.
- > Aislamiento en isla (para las conexiones a la red).

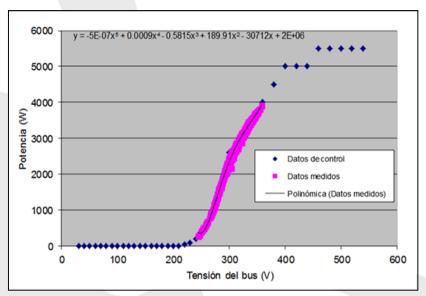
Control de potencia y velocidad

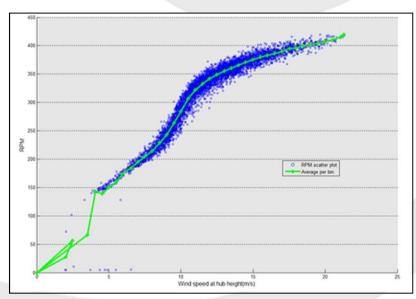
Control de potencia

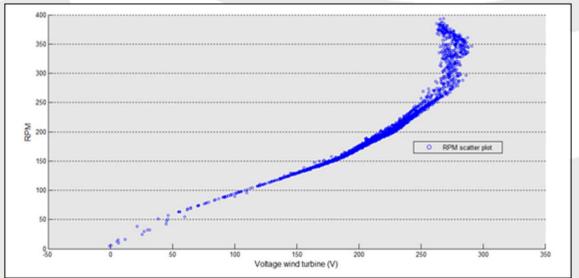
- Curva de potencia, con estos valores se muestra como el aerogenerador controlo a la potencia y cómo y cuándo hay limitación de potencia.
- Comportamiento después de velocidades del viento de cut-off (en caso de que el aerogenerador lo tenga).

Control de la velocidad del rotor

- ➤ El fabricante debe declarar un control de velocidad del rotor en función dela velocidad del viento o potencia.
- Sobrevelocidad no puede ser observada o medida a menos que esté en operación manual.





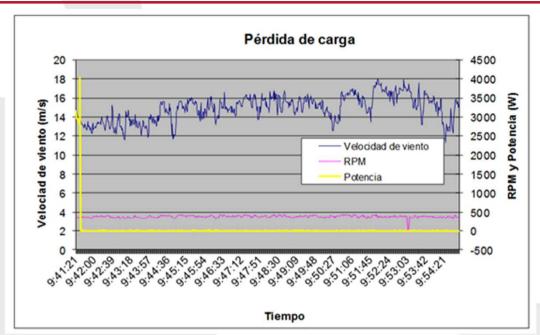


Control de potencia y velocidad

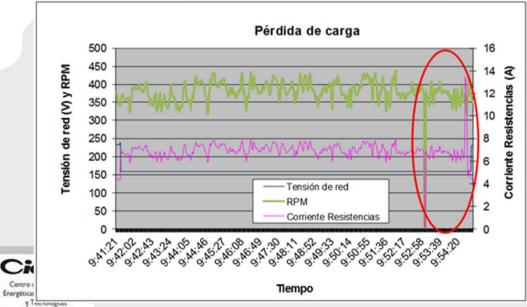
MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

Control del sistema de orientación

- Comprobar que el aerogenerador sigue la dirección del viento.
- Dificultad para medir el ángulo de yaw. Éste debería ser una salida del sistema de control del aerogenerador, que no perturbe el flujo de viento.
- Observación del aerogenerador en varias condiciones de viento con la ayuda de fotos y videos es la mejor opción.


Pérdida de carga

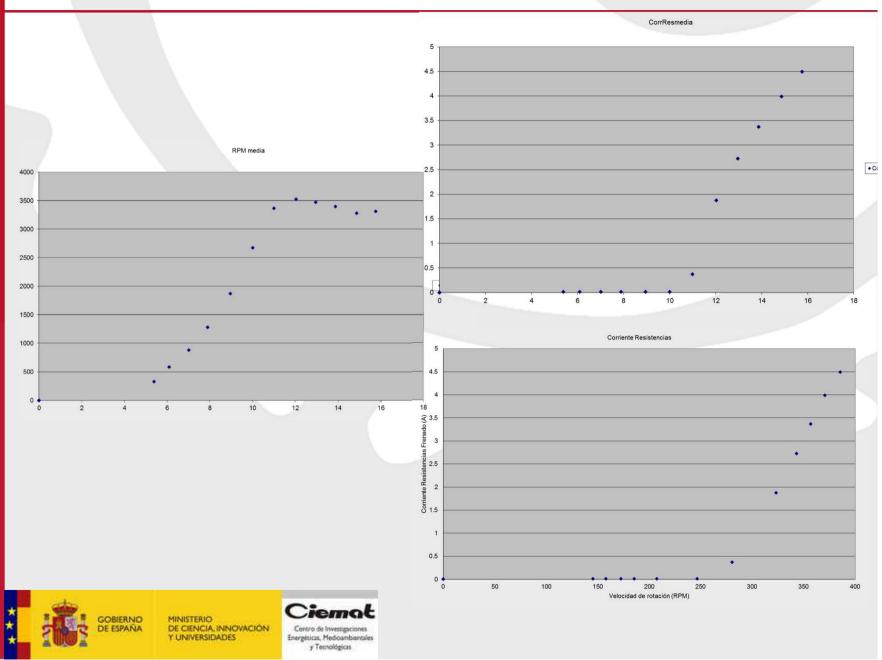
- Comprobar el comportamiento del aerogenerador cuando se produce una pérdida de carga. Medidas de potencia, velocidad del viento, rpm, tensión de red deben ser medidas.
- > Fotos y videos también pueden ser aportados.



Pérdida de carga

DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

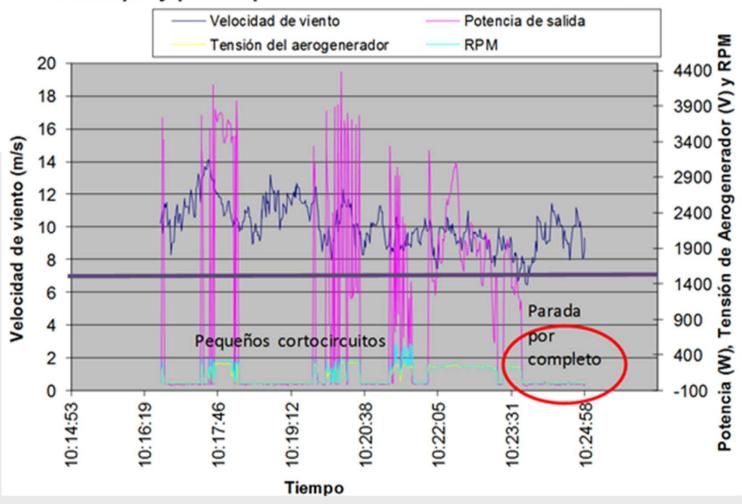
Protección contra la sobrevelocidad


- Comprobar el comportamiento del aerogenerador cuando existe una velocidad del viento igual o superior a la velocidad de diseño del aerogenerador. Medidas de potencia, velocidad del viento, rpm, tensión de red deben ser medidas.
- ➤ En función del fabricante, tendrá un control de sobrevelocidad u otro (parada controlada del aerogenerador, o continuar con la producción pero con regulación de pitch y también electrónico, etc)
- > Fotos y videos también pueden ser aportados.

Protección contra la sobrevelocidad

Arranque y parado por encima de la velocidad de viento de diseño

- Comprobar el comportamiento del aerogenerador después de una parada. Debe haber al menos medidas de velocidad del viento, rpm y potencia.
- Comprobar el comportamiento del arranque del aerogenerador a velocidades por encima de la velocidad de diseño.



Arranque y parado por encima de la velocidad de viento de diseño

Arranque y parada por encima de la velocidad de diseño

Y UNIVERSIDADES

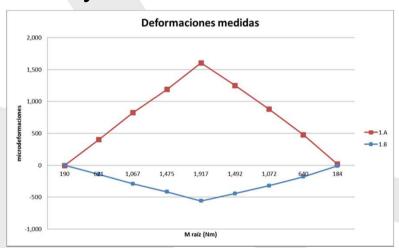
Ensayo de palas

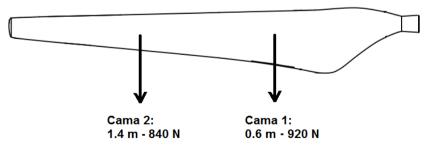
- > Peor combinación de cargas en flap y centrífugo.
- Se debe medir la deflexión máxima de la punta de la pala.
- > Ensayo de propiedades mecánicas.
- ➤ Si se hace ensayo de fatiga (no obligatorio) se debe hacer siguiendo los criterios de la IEC 61400-23

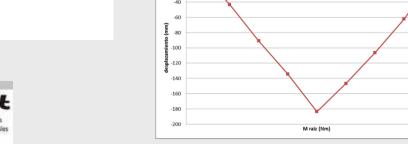
Ensayo de propiedades mecánicas

- > Masa
- Centro de gravedad
- > Primeras frecuencias propias
- Coeficiente de amortiguamiento

Longitud	Peso	Centro de	1ª Frecuencia	1º Frecuencia
(mm)	(kg)	gravedad	Flap	Lead-lag
		(mm)	(Hz)	(Hz)
1886.0	6.33	626.4	11.51	23.60
1886.0	6.35	628.2	11.40	23.67
1886.0	6.41	623.9	11.60	23.70






Ensayo estático

> Medida de deformaciones en la raíz

> Ensayo de calibración.

1,067 1,475 1,917 1,492

Y UNIVERSIDADES

Ensayo centrífugo

> Simular la carga de la fuerza centrífuga.

$$\Delta F_{\rm zB} = 2m_{\rm B}R_{\rm cog}\varpi_{\rm n,design}^2$$

Conclusiones

- Se han expuesto las principales normas y algunos de los ensayos más largos de realizar.
- El ensayo de aerogeneradores requiere bastante tiempo y un buen número de normas por cumplir. Y por lo tanto es costoso.
- El proceso normativo es un proceso muy dinámico. Las normas están continuamente modificándose por parte de los comités internacionales.

MUCHAS GRACIAS POR SU ATENCIÓN!!!!

Luis Cano luis.cano@ciemat.es

DE CIENCIA, INNOVACIÓN